
Chapter 29

Input, output, and sequence

For this chapter, switch languages in DrRacket to “Advanced Student Language”.

In the real world, we don’t usually give a computer all the information it needs, all at
once, and then ask it to go off and produce an answer. More often, we start a program
and engage in a dialogue with it. For example, a word-processing program shows us the
current state of the document; we tell it to add, delete, or move some more words, the
program shows us the result, we request some more changes, and so on. We’ve seen
some ways to interact with a computer program through animations and event handlers,
and in this chapter we’ll see another (more old-fashioned, but still useful) approach to
interaction.

In an animation, the program typically goes on running all the time, but responds
whenever we move or click the mouse, type a key, etc. In some problems, however, the pro-
gram can’t go on until it gets some information from the user. A familiar (if unpleasant)
example are the dialogue boxes that pop up on your screen saying basically “something
went wrong; should I try again, or give up?”

Here’s another example. Suppose you were a mathematician who wanted a list of
prime numbers. Of course, there are infinitely many prime numbers, so if you wrote a
program to produce a list of all of them, it would never finish and you would never see
any results at all. A more useful approach would be for the program to show you a prime
number, then another, then another, and so on until you told it to stop.

Even a program that will eventually stop may need to show you some information
along the way, then do some more computation, show you some more information, and
so on. Of course, you can do this with an animation, but that seems like overkill for
information that’s basically textual.

427

428 CHAPTER 29. INPUT, OUTPUT, AND SEQUENCE

But first, we’ll introduce another data type, which has actually been available to us
all along, but we haven’t needed it until this chapter.

29.1 The symbol data type

Racket has a built-in type called symbol which behaves, in some ways, like string. The
most obvious difference is the spelling rules: a symbol literal starts with an apostrophe
and does not end with an apostrophe, but rather at the next space, parenthesis, etc. As a
result, a symbol literal cannot contain spaces, parentheses, and certain other punctuation
marks. Indeed, the spelling rules for symbol literals are basically the same as those for
variable names and function names, except for the apostrophe at the beginning. (You’ve
actually seen these before: the first argument to error is normally the name of the
function that found the problem, as a symbol.)

Like image literals, string literals, number literals, and boolean literals, a symbol literal
evaluates to itself; it doesn’t “stand for” anything else:

(check-expect ’blah ’blah)

(check-expect ’this-is-a-long-name ’this-is-a-long-name)

The most common operation on symbols is to test whether two of them are equal,
using the symbol=? function, which works analogously to the string=? function:

(check-expect (symbol=? ’blah ’snark) false)

(check-expect (symbol=? ’blah ’blah) true)

(define author ’Bloch)

(check-expect (symbol=? author ’Hemingway) false)

(check-expect (symbol=? author ’Bloch) true)

And as with all the other types we’ve seen, there’s a built-in function to test whether
something is a symbol, named (not surprisingly) symbol?. It works exactly as you would
expect, by analogy with number?, image?, posn?, etc.

Unlike strings, symbols are not thought of as made up of individual characters strung
together. A symbol is atomic, in the original sense of that word as meaning “not made up
of smaller parts”. So there is no symbol-length or symbol-append function analogous to
string-length and string-append. And symbols have no ordering, so there’s nothing
analogous to string<? and its friends: two symbols are either the same or different, and
that’s all you can say about them.

In exchange for these restrictions, computations on symbols are typically a little faster
than those on strings. However, this by itself wouldn’t be enough reason to introduce
them in this course. I’m mentioning them here because the built-in input and output
functions treat symbols a little differently from strings.

Exercise 29.1.1 Modify the choose-picture function of Exercise 15.3.1 so it takes in
a symbol rather than a string as its parameter, e.g. ’baseball, ’basketball, ’Monopoly.

Incidentally, the image functions that take in a color name (circle, rectangle,
triangle, etc.) also accept the corresponding symbols: ’red, ’orange, ’purple, ’black,
etc..

Exercise 29.1.2 Develop a function named random-color that takes in a “dummy”
argument and ignores it, but returns one of the symbols ’red, ’orange, ’yellow, ’green,
’blue, ’purple chosen at random.

29.2. CONSOLE OUTPUT 429

Exercise 29.1.3 Develop a function named different-color that takes in a color
name as a symbol, and returns a different color name, also as a symbol. Which input
color goes with which output color is up to you, as long as the result is always different
from the input.

Hint: DrRacket knows a lot of color names. You could try to write a cond with
dozens or hundreds of cases, but that would be horrible, and it would no longer work
if somebody added one more color name to Racket. Instead, think about how you can
satisfy the requirements of the problem without knowing all the possible colors.

Exercise 29.1.4 Modify exercise 17.1.1 so it uses symbols rather than strings as the
model.

29.2 Console output

Racket has a built-in function named display that does simple textual output.

; display : object -> nothing, but displays the object.

Practice Exercise 29.2.1 Try typing each of the following lines in the Interactions
pane:

(display 5)

(display "this is a string")

(display ’this-is-a-symbol)

(display (make-posn 3 4))

(display (list "a" "b" "c"))

(display (triangle 20 "solid" "blue"))

SIDEBAR:

Another built-in function, write, acts like display, but shows strings with double-
quotes around them, so you can easily tell the difference between a string and a
symbol.

So far this doesn’t look very exciting. If anything, it’s less useful than what we’ve been
doing up until now, because you can’t use the result of display in another expression:

(+ 1 (display 2))

produces an error message because display doesn’t return anything.
The display function becomes much more useful if we build something for it to display

from smaller pieces. For example,

Worked Exercise 29.2.2 Develop a function display-with-label that takes in a
string (the “label”) and an object, and prints the string followed by the object.

Solution: The contract is

; display-with-label : string object -> nothing

; Prints the string and the object.

430 CHAPTER 29. INPUT, OUTPUT, AND SEQUENCE

A more-or-less realistic test case is

(define my-age 46)

(display-with-label "Age: " my-age)

"should print" "Age: 46"

Make up some more test cases.
The skeleton and inventory are straightforward:

(define (display-with-label label thing)

; label a string

; thing an object of some kind

...

)

We could easily display just the label, or just the thing (since display takes in any
data type), but how can we combine them?

Recall the format function (first mentioned in Chapter 19), which is designed to build
complex strings from a “template” with values filled in in various places, returning a
string. Conveniently enough, each of the “values to fill in” can be of almost any data
type. So we could try

(define (display-with-label label thing)

; label a string

; thing an object of some kind

(display (format "~s~s" label thing))

)

Try this on the example above, and it prints

"Age: "46

Not bad, but the quotation marks are annoying. Fortunately, format has different
“formatting codes”: ˜s shows strings with their quotation marks, and ˜a shows strings
without their quotation marks. (The main reason to use ˜s is to allow the user to tell the
difference between strings and symbols.) So

(define (display-with-label label thing)

; label a string

; thing an object of some kind

(display (format "~a~a" label thing))

)

produces a better result:

Age: 46

This combination of format and display is common enough that Racket has a built-
in function to do it: the printf function acts just like calling display on the result of
format, so we could write the definition more briefly as

(define (display-with-label label thing)

; label a string

; thing an object of some kind

(printf "~a~a" label thing)

)

29.2. CONSOLE OUTPUT 431

SIDEBAR:

The display and write functions can indeed take in just about any data type,
including images. However, format’s job is to build a string, and strings cannot
contain images, so if you try format on an image, you’ll get weird results.

Testing functions that use console output

How can we write test cases for a function like display-with-label that uses display
or write? check-expect looks at the result returned by a function, but display and
write don’t return anything!

In Exercise 29.2.2, we used the “should be” approach. But as we already know,
automated testing using check-expect is much more convenient. If only we could find
out what the function printed, and compare it with a known right answer. . .

As it happens, there’s a built-in function named with-output-to-string to do this:
it evaluates an expression of your choice (presumably containing display or write), but
captures whatever that expression tries to write, and puts it into a string instead; you
can then check whether this string is what you expected with check-expect.

Its contract may seem a little strange at first:

; with-output-to-string : (nothing -> anything) -> string

That is, you give it a function of no parameters ; it calls this function, throws away any
result it produces, and returns a string constructed from whatever the function displayed.

Worked Exercise 29.2.3 Write automated test cases for Exercise 29.2.2.

Solution: We need a function of no arguments to pass into with-output-to-string.
We could write one for each test case:

(define age 46)

(define last-name "Bloch")

(define (test-case-1) (display-with-label "Age: " age))

(define (test-case-2) (display-with-label "Name: " last-name))

(check-expect (with-output-to-string test-case-1) "Age: 46")

(check-expect (with-output-to-string test-case-2) "Name: Bloch")

This seems silly. We can define the functions more simply using lambda:

(define age 46)

(define last-name "Bloch")

(check-expect

(with-output-to-string

(lambda () (display-with-label "Age:" age)))

"Age: 46")

(check-expect

(with-output-to-string

(lambda () (display-with-label "Name: " last-name)))

"Name: Bloch")

432 CHAPTER 29. INPUT, OUTPUT, AND SEQUENCE

Functions of no arguments can be thought of as a way to pass around expressions
without evaluating them until later. They come up often enough in Racket that they
have a special name: they’re called thunks.

Exercise 29.2.4 Recall the struct definition

; An employee has a string (name) and two numbers (id and salary).

(define-struct employee [name id salary])

Develop a function print-employee that takes in an employee and returns nothing,
but prints out the information about the employee, nicely formatted. For example,

(print-employee (make-employee "Joe" 17 54000))

"should print" "Joe, employee #17, earns $54000/year"

29.3 Sequential programming

When you evaluate an expression like (+ (* 3 4) (* 5 6)), Racket needs to compute
both 3·4 and 5·6, then add them. It doesn’t really matter which of the two multiplications
it does first, as long as it knows both answers before it tries to add them.

But display and write don’t produce “answers”, they produce side effects, and it
matters very much which of two display expressions happens first. Racket has a syntax
rule to specify doing things in a particular order:

Syntax Rule 10 (begin expr1 expr2 ...exprn) is an expression. To evaluate it,
DrRacket evaluates each of the exprs in order, throwing away any results they produce
except the last one, which it returns.

For example, type the following into the Interactions pane:

(define result

(begin

(display (+ 12 5))

(* 5 3)))

result

It prints out the number 17, but gives result the value 15.

Now let’s try that in the opposite order:

(define other-result

(begin

(* 5 3))

(display (+ 12 5)))

other-result

This still prints out the number 17, but other-result has no value at all (because
display doesn’t return anything). The result of (* 5 3) has been thrown away com-
pletely.

Worked Exercise 29.3.1 Rewrite the function display-with-label to use begin in-
stead of format.

Solution: The contract, test cases, skeleton, and inventory are exactly as before.

In the function body, clearly, we need to display both the label and the object:

29.3. SEQUENTIAL PROGRAMMING 433

(define (display-with-label label thing)

...

(display label)

...

(display thing)

...)

More specifically, we want to display the label first, followed by the thing. To do this,
we’ll use begin:

(define (display-with-label label thing)

(begin

(display label)

(display thing)

))

Controlling lines

Sometimes you need to specify that the output should be on more than one line. There
are several ways to do this:

• Use the built-in function

; newline : nothing -> nothing

; advances the display to the next line

in between displays in a begin, e.g.

> (begin (display "abc")

(newline)

(display "def"))

abc

def

• Hit ENTER in the middle of a quoted string, e.g.

> (display "abc

def")

abc

def

• Some languages don’t allow you to do this, so they use a third approach instead:
you can put the special character \n in the middle of a quoted string to indicate a
“new line”:

> (display "abc\ndef")
abc

def

Notice that all three produced the exact same output; which one you use is largely a
matter of personal taste.

434 CHAPTER 29. INPUT, OUTPUT, AND SEQUENCE

Worked Exercise 29.3.2 Modify the print-employee function to display its informa-
tion on three separate lines, e.g.

Joe

Employee #17

$54000/year

Solution: The contract, skeleton, and inventory are unchanged, but we’ll need to modify
the test cases. Here are two versions; either one should work.

(check-expect

(with-output-to-string

(lambda () (print-employee (make-employee "Joe" 17 54000))))

"Joe\nEmployee #17\n$54000/year")

(check-expect

(with-output-to-string

(lambda () (print-employee (make-employee "Joe" 17 54000))))

"Joe

Employee #17

$54000/year")

Next, we’ll need to modify the function body. This can be done in any of several ways:

(begin

(display (employee-name emp))

(newline)

(display "Employee #")

(display (employee-id emp))

(newline)

(display "$")

(display (employee-salary emp))

(display "/year"))

(begin

(display (employee-name emp))

(display "

Employee #")

(display (employee-id emp))

(display "

$")

(display (employee-salary emp))

(display "/year"))

(begin

(display (employee-name emp))

(display "\nEmployee #")

(display (employee-id emp))

(display "\n$")
(display (employee-salary emp))

(display "/year"))

29.3. SEQUENTIAL PROGRAMMING 435

(printf "~a

Employee #~a

~a/year"

(employee-name emp)

(employee-id emp)

(employee-salary emp))

(printf "~a\nEmployee #~a\n~a/year"
(employee-name emp)

(employee-id emp)

(employee-salary emp))

Any of these five solutions should work; which one you use is largely a matter of
personal taste.

Exercise 29.3.3 Develop a function try that takes in a string (function-name), a
function of one argument, and a value for that argument. It should print that it is “about
to call” the function name on the specified argument, then call the function, then print
that it has “returned from ” the function and what the result was, and finally return that
result. For example,

(try "cube" cube 5)

should print out

About to call (cube 5)

Returned from (cube 5) with result 125

and finally return the result 125. For another example,

(try "display" display "blah")

should print out

About to call (display "blah")

blah

Returned from (display "blah") with result

Exercise 29.3.4 Develop a function count-down-display that takes in a whole num-
ber. It doesn’t return anything, but displays the numbers from that number down to 0,
one on each line, with ”blastoff!” in place of the number 0. For example,

> (count-down-display 5)

5

4

3

2

1

blastoff!

436 CHAPTER 29. INPUT, OUTPUT, AND SEQUENCE

Exercise 29.3.5 Modify exercise 21.7.10 by adding two buttons, labelled “save” and
“load”. If the user clicks the “save” button, the current image (not including the color
palette, “save” and “load” buttons) will be stored in the file “current.png” with save-image;
the image on the screen shouldn’t change. If the user clicks the “load” button, the image
on the screen should be replaced with the contents of “current.png” (although the color
palette, “save” and “load” buttons should be unaffected).

29.4 Console input

29.4.1 The read function

The opposite of display, in a sense, is the built-in function read.

; read : nothing -> object

; waits for the user to type an expression, and returns it

Try typing (read) into the Interactions pane. You should see a box with a typing
cursor in it. Type a number like 17 into the box, and hit ENTER; the read function will
return 17.

Type (read) again, and type a quoted string like "hello there" (complete with the
quotation marks) into the box; read will return that string.

What happens when you type (read) and type a couple of words like this is a

test (without quotation marks) into the box?

What happens when you type (read) and type a parenthesized expression like (+ 3

4) into the box? What about (+ 3 (* 4 5))?

What happens when you type (read) and type a Boolean literal (true or false) into
the box?

What happens when you type (read) and type a comment like ; this is a comment

into the box?

What happens when you type (read) and type a symbol like ’snark (with its apos-
trophe) into the box?

SIDEBAR:

This last example should come out looking similar to a function call, but with the
“function” being named quote. In fact, there is a quote function; play with it to
find out what it does, then look it up in the Help Desk.

There’s also a function read-line which reads a whole line of input as a single string,
even if it has spaces, parentheses, etc. inside it. Try it.

29.4.2 Testing functions that use console input

It’s harder to write test cases for a function that involves input: some information may be
provided as arguments, but some will be provided as input. So we could write, essentially,
an actor’s script: I’ll say this, the program should say that, I’ll say something else, the
program should reply with such-and-such.

But that’s even more of a pain than using “should be”. So there’s a built-in function

; with-input-from-string : string (nothing -> anything) -> anything

29.4. CONSOLE INPUT 437

which calls the specified thunk, but any time it tries to read from the console, it actually
gets input from the string instead. with-input-from-string returns whatever the thunk
returns.

Worked Exercise 29.4.1 Develop a function ask that takes in a string, prints it,
waits for input, and returns that input.

Solution: Contract:

; ask : string -> object

; prints the string, waits for input, and returns it

Test cases, written as an “actor’s script”:

(ask "What is your name?)

; It prints "What is your name?".

; I type "Stephen" (without the quotation marks).

; It returns the symbol ’Stephen.

(define age (ask "How old are you?"))

; It prints "How old are you?".

; I type 46.

; It defines age to be 46.

Test cases, written using check-expect and with-input-from-string:

(check-expect

(with-input-from-string "Stephen"

(lambda () (ask "What is your name?")))

’Stephen)

(define age

(with-input-from-string "46"

(lambda () (ask "How old are you?"))))

(check-expect age 46)

Definition:

(define (ask question)

(begin

(display question)

(read)))

Remember that begin always returns the value of its last expression, which in this case
is whatever read returns, which is whatever the user typed.

Note: Even after your function has passed all its automated tests, it’s probably a good
idea to try a few tests in the Interactions pane, to make sure your program interacts with
the user the way you want it to.

Worked Exercise 29.4.2 Develop a function greet-by-name that takes no parame-
ters, asks for your name, then displays “Hello, your-name-here!”.

Solution: Since this function takes keyboard input and also prints to the screen, we’ll
need both with-input-from-string and with-output-to-string:

438 CHAPTER 29. INPUT, OUTPUT, AND SEQUENCE

(check-expect

(with-output-to-string

(lambda ()

(with-input-from-string "Steve" greet-by-name)))

"What’s your name?Hello, Steve!")

This works, but it’s a bit of a pain. The with-io-strings function combines the jobs
of with-input-from-string and with-output-to-string; its contract is

; with-io-strings: string thunk -> string

For example, the above test case could be rewritten as

(check-expect (with-io-strings "Steve" greet-by-name)

"What’s your name?Hello, Steve!")

I leave the rest of the definition as an exercise for the reader (and it’s in the Help Desk
documentation for with-io-strings).

29.4.3 Exercises

Exercise 29.4.3 Develop a function repeat-input that takes in a string (the “ques-
tion”). It prints the question, waits for input, then prints the result twice, on separate
lines, and returns nothing.

Hint: You need to read only once, but use the result twice, so you’ll need either a
helper function or a local.

Exercise 29.4.4 Develop a function ask-posn that takes in no arguments, asks the
user for an x coordinate and a y coordinate, and creates and returns a posn with those
coordinates.

Hint: This one does not require local.

Exercise 29.4.5 Modify exercise 29.3.5 so that when the user clicks the “load” or
“save” button, the program asks you for a filename (using ask or something similar),
then loads or saves that file rather than always using “current.png”. You’ve now written
a simple graphics editor.

An optional nice feature would be to have “load”, “save”, “load from”, and “save to”
buttons: “load from” and “save to” should behave as above, but “load” and “save” will
operate on the last filename you used.

Hint: You may want to use read-line rather than read, to avoid worrying about
whether the input is treated as a symbol or a string, and to allow filenames to contain
spaces.

29.5 Input streams

Many programs need to operate on a variable amount of information. We’ve seen how to
do this with lists, but what if the information isn’t provided in the form of a completed
list?

29.5. INPUT STREAMS 439

Throughout this book, we’ve designed functions to correspond to the data type they
take in. To handle a sequence of data coming from input, we’ll need to describe it as a
data type — an “input stream”.

We’ve been using read to read information from the keyboard. But computer pro-
grams often read from files too: word processing documents, spreadsheets, image and
music files, etc. Such files “feel” like lists: they’re either empty or they have a sequence
of finitely many objects. As you know, the end of a list is indicated by a special ob-
ject named empty, which is recognized by the empty? function; similarly, the end of a
file is indicated by a special object named eof, which is recognized by the eof-object?

function.
While practicing with the read function, you may have noticed an eof button next

to the input box. Clicking this button causes read to return an eof object, as though at
the end of a file. (You’ll also get an eof object if you read past the end of the string in
with-input-from-string.)

The read function, in essence, returns the first object, or eof, from an input stream,
and has the side effect of “advancing” the input stream so that the next call to read will
return the next object in the stream. As a result, if we want to use the result more than
once, we’ll need to store it in a local variable.

We can now write a function template for functions that operate on input streams.

#|

(define (function-on-input-stream)

(local [(define obj (read))]

(cond [(eof-object? obj) ...]

[else

; obj non-eof object

; (function-on-input-stream) whatever this returns

...

)))

|#

440 CHAPTER 29. INPUT, OUTPUT, AND SEQUENCE

Worked Exercise 29.5.1 Develop a function add-from-input which asks the user
for a sequence of numbers, one at a time, terminated by eof, and returns their sum.

Solution: The function takes no parameters, but reads from input and returns a number.

; add-from-input : nothing -> number

; (reads zero or more numbers from input, terminated by eof)

We’ll need several test cases. As with lists, we’ll need an empty test case, and a one-
element test case, and a more complicated test case. The function assumes that the inputs
are numbers, so we don’t need test cases with non-numbers.

First, I’ll write them in the form of an “actor’s script”:

(add-from-input)

; It asks for a number.

; I hit the EOF button.

; It should return 0.

(add-from-input)

; It asks for a number.

; I type 7.

; It asks for a number.

; I hit the EOF.

; It should return 7.

(add-from-input)

; It asks for a number; I type 7.

; It asks for a number; I type -3.

; It asks for a number; I type 6.

; It asks for a number; I hit EOF.

; It should return 10.

29.5. INPUT STREAMS 441

But it’s easier to run the test cases if we automate them with check-expect. Conve-
niently, add-from-input is already a thunk, so we don’t need to wrap it up in a lambda:

(check-expect (with-input-from-string "" add-from-input)

0)

(check-expect (with-input-from-string "7" add-from-input)

7)

(check-expect (with-input-from-string "7 -3 6" add-from-input)

10)

The template gives us a good deal of the definition:

(define (add-from-input)

(local [(define obj (read))]

(cond [(eof-object? obj) 0]

[else

; obj number

; (add-from-input) number

...

)))

But this doesn’t actually “ask” for numbers; to do this, let’s replace the call to read

with a call to ask. The only other thing left to do is add the two numbers:

(define (add-from-input)

(local [(define obj (ask "Next number?"))]

(cond [(eof-object? obj) 0]

[else

; obj number

; (add-from-input) number

(+ obj (add-from-input))

)))

If we want to make the function more “idiotproof”, we can change the contract to
read a sequence of objects rather than numbers, and have the function signal an error in
that case.
(check-error (with-input-from-string "7 eight 9" add-from-input)

"add-from-input: That’s not a number!")

...

(define (add-from-input)

(local [(define obj (ask "Next number?"))]

(cond [(eof-object? obj) 0]

[(number? obj)

(+ obj (add-from-input))

[else

(error ’add-from-input "That’s not a number!")

)))

442 CHAPTER 29. INPUT, OUTPUT, AND SEQUENCE

Exercise 29.5.2 Develop a function read-objects which asks the user for a sequence
of objects, terminated by eof, and returns a list of those objects, in the order that they
were typed in.

Exercise 29.5.3 Develop a function read-objects-until which takes in an object
(which we’ll call the “terminator”) and acts just like read-objects above except that it
stops when it gets either the eof object or the “terminator”.

For example, suppose I type (read-objects-until ’quit).
It asks me for an object; I type 3.
It asks me for an object; I type snark.
It asks me for an object; I type quit.
It returns the list (list 3 snark).

Hint: Since you don’t know what type the terminator object will be, you’ll need equal?.

Exercise 29.5.4 Develop a function echo which asks the user for a sequence of ob-
jects, terminated by eof, and displays each of them on a separate line, in the same order
that they were typed in.

Hint: You’ll need begin.

29.6 Files

In the real world, programs read and write files at least as often as they read from the
keyboard or write to the screen. There are predefined functions to make that easy:

; with-input-from-file : string(filename) thunk -> anything

; Calls the thunk in such a way that if the thunk uses read or

; similar functions, it will read from the specified file instead

; of from the keyboard.

; Returns the result of the thunk.

; with-output-to-file : string(filename) thunk -> anything

; Calls the thunk in such a way that if the thunk uses display,

; write, print, printf, etc., they will write to the specified file

; instead of to the screen.

Note: if you plan to write from a program into a file, and later read from the same file
into a program, it’s a good idea to use write rather than display; otherwise you may
write out a string and read it in as a symbol. Also, write and display do a good job of
showing images on the screen, but they don’t know how to save an image to a file; if you
need to store images in files, use save-image and bitmap instead.

29.7. THE WORLD WIDE WEB 443

Exercise 29.6.1 Modify exercise 21.7.9 to add “save” and “load” buttons as in exer-
cise 29.3.5, and optionally “save-to” and “load-from” buttons as in exercise 29.4.5. Note
that when you save to a file and re-load later from the same file, the cursor position
(as well as the contents) should be preserved. You’ve now written a very simple word
processor.

29.7 The World Wide Web

Another common source of information to programs is the World Wide Web. There’s a
predefined function that helps you get information from Web sites:

; with-input-from-url : string thunk -> anything

; Calls the thunk in such a way that if it uses read or similar functions,

; they’ll read from the specified Web page instead of from the keyboard.

For example,

(with-input-from-url "http://www.google.com" read-line)

will give you back the first line of the Google website (headers, HTML, Javascript, the
whole works).

Of course, extracting really useful information from the Web requires recognizing the
structure of an HTML or XML document. DrRacket comes with libraries to help with
that, but they’re beyond the scope of this book; look up “XML” in the Help Desk.

29.8 Review of important words and concepts

Historically, most programs have expected to “read” their input, either from a file or from
the user’s keyboard, and “write” their results, either to a file or in text form to the user’s
screen. In this chapter we’ve learned how to do that in (Advanced Student Language)
Racket. These are our first examples of functions with side effects (almost: define and
define-struct can be thought of as functions with side effects), and hence the first for
which the order of calling functions makes a big difference. To tell Racket that we want
to evaluate a series of expressions in order, not for their values but for their side effects,
we use the begin form.

444 CHAPTER 29. INPUT, OUTPUT, AND SEQUENCE

29.9 Reference: input, output, and sequence

In this chapter, we’ve seen the following new built-in functions:

• display

• write

• printf

• begin

• newline

• read

• read-line

• with-input-from-string

• with-output-to-string

• with-io-strings

• with-input-from-file

• with-output-to-file

• with-input-from-url

